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A G A S  P E N D U L U M  

L. V. O v s y a n n i k o v  UDC 533 

It is shown that a periodic two-dimensional isentropic motion of a gas exists and it is described 
by an exact solution of the equations of gas dynamics. A polytropic gas that fills a circular 
cylinder rotates and oscillates (in the radial direction) simultaneously under the action of 
periodically changing external pressure. The solution obtained belongs to the class of solutions 
with a velocity field that is linear in the coordinates (with homogeneous deformation). 

In tr oduc t ion .  The regimes of motion of a gas (or a liquid) under homogeneous deformation has long 
been studied and is dealt with in a large body of literature (see, e.g., [1]). We recall that  for a polytropic gas 
with an adiabatic exponent " / >  1, one class of these regimes of motion is governed by the formulas 

x = ME, u = IQ~, p = (7 - 1)m-~g(h),  p = m- lg ' (h ) ,  (0.1) 

where x E II~ n and ~ E R'~ are, resl~ectively, the Cartesian and the Lagrangian coordinates of the gas particles, 
u is the velocity vector, M = M ( t )  is an (n • n) nondegenerate matrix (n = 2, 3), g(h) > 0 is an arbitrary 
differentiable function, gt(h) > 0 is its derivative; the quantities re(t) and h(~) are such that:  

m = det M > 0, h = e1~12/2 (~ = =t=1). (0.2) 

The dot above M and other quantities denotes differentiation with respect to time t. The quantities (0.1) 
and (0.2) are an exact solution of the equations of gas dynamics provided that  the matrix M satisfies the 
equation 

/~I + ~(7 -- 1 ) m l - ~ M ,  1 = 0, (0.3) 

in which M~ -1 is the inverse of the transposed matrix ~I, .  
Equation (0.3) is a dynamic system of order 2n 2 for the n 2 elements of the matrix M = (Mij). This 

system has n 2 - n + 1 first integrals, which were first found in [2], namely, the integrals of the moment of 
momentum 

the vorticity integrals 

and the energy integral 

MY/I. - _~IM. = J, 

M.2I;/-  3; / .M = :X 

1 E/1~I2 = aml-'Y + E ' 
. . 

z , 2  

where J and tK are (n • n) arbi t rary constant skew-symmetric matrices and E is an arbitrary constant (for 
a more general case, the integrals ~K and E were obtained in [3]). Anisimov and Lysikov [4] inferred that for 
7 = (n + 2)/n,  system (0.3) has the additional integrals 
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E M = 2 E t  2 + A t  + B ,  
i , j  

where A and B are constants. In the case n = 2 (7 = 2), these were used in [4] to show that  the corresponding 
system (0.3) can be integrated in quadratures. 

T h e  quantity s = •  and the function g(h) can be used to develop various specific physical models 
for mot ion  of a gas. For example, for ~ = - 1 ,  Dyson [2] considered a "gas cloud" model that  corresponds 
to g = exp (h). Moreover, for s = - 1 ,  a choice of a finite function g(h) gives examples of expansion of a 
gas ellipsoid into vacuum. Sett ing s = 1, one can consider the motion of a gas ellipsoid under the action of 
e ~ e r n M  pressure that varies with time. Isentropic mot ion of a gas corresponds to the choice of g according 
to the  relation g(g')-~ = const, which leads to the function 

g = (co + cih) ~/(~-1) (co, Cl = const). (0.4) 

Below, we consider a simple example of an exact solution that  describes the two-dimensional motion 
(n =- 2) of a gas cylinder under  the action of external pressure. 

1. M o d e l  o f  M o t i o n  o f  a C y l i n d e r .  For n ---- 2, we consider the matr ix  

M = , M2 "1 = m - l M ,  m = a 2 + b 2. (1.1) 
- b  a 

In this  case, the dynamic system (0.3) reduces to the equations 

: a Jr s(~/-- 1)rn-~a = O, b d- s(? - 1)m-~b -- 0. (1.2) 

Here J and CE satisfy the relation J + 9C -- 0, which implies tha t  system (1.2) has the two first integrals 

ba - ab = j (j  = const), a s + 62 = ~m 1-'r + 2E. (1.3) 

In the  polar  coordinates 

sys tem (1.3) becomes 

a = ml/2 cos/~, b = mi/2 sin/~, (1.4) 

3 = - j / m ;  (1.5) 

m2 = 4 f ( m ) ,  f ( m )  = s m  + 2Era - j2 .  (1.6) 

Thus,  the  dynamic system (1.2) can be integrated in quadratures.  
T h e  kinematics of motion of the gas described by these solutions can be clearly demonstrated with the 

use of  the  polar coordinates 

(x, y) = r(cos sin n) =  (cos 0, sin 0) 

in t e rms  of the radial (Vr) and the circumferential (V~) components  of the velocity vector u = (u, v): 

Vr = ucoslo + vsin!o, V~ = - u s i n ~  + vcostp. 

Using Eqs. (1.3)-(1.5), one readily obtains the expressions 

Vr = rrh/(2m),  V~ = r j / m ,  r = ~m  1/2. (1.7) 

It follows that  at each moment,  the distribution of the circumferential velocities is identical to that for rigid- 
body  rota t ion with angular velocity ~ = j / m  and the distribution of the radial velocities is proportional to  
the radius r. Without loss of generality, we assume tha t  the region occupied by the gas is bounded by the  

surface of a cylinder OR of radius R that  corresponds to the value cr = 1, i.e., R = rL= 1 . ,  Then, R = [m(t)] 1/2, 

the radial  velocity of motion of the surface CR is 

VR = R~n/  (2m),  (1.8) 
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and the entire cylinder rotates  with angular velocity f2 = j /m.  In this case, the region occupied by the gas 

is assumed to be inside CR, i.e., for r < R or ~r < 1. Using formula (0.1), we determine the pressure on CR: 

p R  = (2:  - ( 1 . 9 )  

Determinat ion of the possible modes of specific motion of the gas in model (1.1) is reduced to analysis 

of solutions of the key equation (1.6). They depend strongly on the signs of the three quantities: r -y - 2, 
and E.  

Real solutions of Eq. (1.6) are possible only in the intervals A e (0 < m < c~) in which f (m)  > 0. For 

e = - 1 ,  the condition E > 0 must  hold. In this case, for any ~ > 1, an interval A = (m0, oo) wi th  m0 > 0 

exists, and the corresponding solutions describe unbounded expansion of  the gas cylinder CR into vacuum. 

For r = 1, 3:/> 2, and any E ,  there exists an interval A = (0, m0) which corresponds to the mot ion  of CR 
with collapse of the density and pressure on the axis r = 0. If r = 1 and  "~ < 2 an oscillation mode  of the 
motion of CR is possible, which is discussed in Sec. 2. 

2. P u l s a t i o n  o f  t h e  C y l i n d e r .  Let r = 1, 2: < 2, and E < 0. In  this case, the expressions 

f '(m) = (2 - 2:)m 1-~ + 2E, f#(m) = (2 - 2:)(1 - 2:)rn-': 

imply tha t  the function f (m) is convex upward and has a maximum at  the point m .  determined from the 
relation 

(2 - 7 ) m .  1-*: = 21E [. (2.1) 

At this point, the function f has the value 

2:-  1 21Elm, _ j2. (2.2) f (m.)  = 2 - 2: 

Therefore, if quant i ty  (2.2) is positive, there exists an interval A = (ml ,  rn2), where 0 < ml  < m < m2 < oo, 

in which f (m) > 0 and f (ml)  = f(rn2) = O. Moreover, f '(ml) > 0 and f ' (m2)  < 0. Consequently, the 
representation 

f (m) = (m -- ml) (m2  - rn)F(m) (2.3) 

is valid. Here F(m) > 0 for ml  ~< m ~< m2, and the quadrature  

-I- : dm 
- 2 t  + c (2 .4 )  

determines a periodic function m(t) with period 

m 2  

f dm (2.5) T= v/7  
r n l  

Let m(0) = m l  for t = 0, which corresponds to the minimum radius R = ~ of the cylinder CR 
and the ma~ximum external  pressure on it determined by (1.9). For t ---- 0, the gas rotates as a rigid body 

with max imum angular  velocity f~l = j /ml .  For t > 0, expansion of the cylinder begins according to the law 

R = V / - ~ ,  where re(t) is determined by the following formula [upper sign (plus) in (2.4)]: 

re(t) 

f ~ = 2t, 
,m 

and the pressure on the cylinder wall decreases monotonically until the value m = m2 is reached at the 

moment  t l  = T/2, when CR rotates again as a rigid body  with angular velocity f~2 = j/m2 < ~21, and the 
pressure on CR is minimum.  After that ,  compression of the cylinder occurs: re(t) decreases according to the 

formula [lower sign (minus) in (2.4)1 
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rn2  

f d m = _ 2(t tl). 

r,(t) 

The compression occurs up to the moment t2, when re(t) reaches the value ml once again; in this case, t2 
is determined from the relation 2tl = 2(t2 - t l ) ,  whence t2 = T. For t = t2, the motion assumes the initial 
mode (as for t = 0), and further, the process is repeated with period T. This motion can be called a "gas 
pendulum" by analogy with the usual mechanical oscillations of a physical pendulum. The principal specific 
feature of the "gas pendulum" is that  it exists "eternally," similarly to s teady gas flows: it cannot be obtained 
from the rigid-body rotat ion of the gas by external action on the boundary CR over a finite time. Indeed, the 
variation of the parameters of motion due to this action must propagate into the cylinder with a finite velocity, 
whereas the motion mode of the "gas pendulum" is determined immediately in the entire cylinder CR. In 
view of this, experimental implementation of the "gas pendulum" can involve certain difficulties. 

The pressure distribution in the "gas pendulum" is determined up to an arbitrax T function g(h). In 
particular, an isentropic "gas pendulum" is possible, where the pressure is given by formulas (0.1) and (0.4). 
Moreover, a vacuum region (r = 0) can occur in the neighborhood of the axis (p = 0); to obtain this region, 
it suffices to choose values co < 0 and cl > 21col in (0.4). 

3. N o r m a l i z a t i o n  a n d  E x a m p l e .  The d y n a ~ c  system (0.3) admits (in the Lie sense) a large 
group of transformations of the space ]Rl~ M) ,  which deserves a separate discussion. Here we use only an 
admissible one-parameter group of extension, which, in the case of two-dimensional motion (n = 2), is given 
by the formulas 

t = k~t I, M = k M  t, m = k2m I (3.1) 

with the extension parameter  k > 0. As applied to system (1.1)-(1.3), this leads to the following transfor- 
mation of the constants: 

j = k2-'rj  I, E = k2-2"YEt. (3.2) 

One can easily verify tha t  the Key equation (1.6) and its integrals (1.3) remain invariant for transformations 
(3.1) and (3.2). 

1, for which purpose it is necessary to set Using (3.1), one can normalize the solution so that  m.  = 
k = v/-~'.. According to- (2.1), the normalized solution is determined by Eq. (1.6) with 21E ] = 2 - 7, i.e., 
with the function 

f ( m )  = rn 2-7 - (2 - "y)m - j2, (3.3) 

and according to (2.2), the condition of positive quanti ty f ( m . )  = f(1)  assumes the form 3' > 1 + j2. I t  
follows that  a normalized "gas pendulum" exists if j2 < . , /_ 1 < 1 and oscillates with period T (2.5), where 
f ( m )  is given by formula (3.3). 

As an example, we consider the value 7 = 3/2, for which the period T is calculated exactly and is 
independent of the quant i ty  j2 < 1/2. Indeed, if one introduces the radius R = v ~  of the cylinder CR in 
place of m, for 3' = 3/2, Eq. (1.6) becomes 

2R2/~ 2 = (R - R1)(R2 - R), 

where 

R1 = 1 -  v/1 - 2j 2, R2 = 1 + v/1 - 2j  2. 

The quadrature yields the relation between t and R 

/ R -  R1 
2 arcsin VR-'22 --'~1 x/(R - R1)(R2 - R) = t / v ~  

and the period T = 2v/'2rr. 
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(3.4) 

(R1 R R2) (3.5) 

The natural question of the existence of a spherical (n = 3) "gas pendulum" is still an open question. 



REFERENCES 

1. O. I. Bogoyavlenskii, "Methods of qualitative theory of dynamic systems in astrophysics and gas dynamics," 
in: Dynamics of Gas Ellipsoids [in Russian], Nauka, Moscow (1980), pp. 261-299. 

2. F. J. Dyson, "Dynamics of a spinning gas cloud," J. Math. Mech., 18, No. 1, 91-101 (1968). 
3. L. V. Ovsyannikov, "New solution of hydrodynamic equations," Dokl. Akad. Nauk SSSR, 111, No. 1, 

47-49 (1956). 
4. S. I. Anisimov and Yu. I. Lysikov, "Expansion of a gas cloud into vacuum," Prikl. Mat. Mekh., 34, 

926-929 (1970). 

869 


